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Abstract
Most utilization of human diets occurs in the small intestine, which remains largely unstudied. Here, we
used a novel non-invasive, ingestible sampling device to probe the spatiotemporal variation of upper
intestinal luminal contents during routine daily digestion in 15 healthy subjects. We analyzed 274
intestinal samples and 60 corresponding stool homogenates by combining �ve metabolomics assays
and 16S rRNA sequencing. We identi�ed 1,909 metabolites, including sulfonolipids and novel bile acids.
Stool and intestinal metabolomes differed dramatically. Food metabolites displayed known differences
and trends in dietary biomarkers, unexpected increases in dicarboxylic acids along the intestinal tract,
and a positive association between luminal keto acids and fruit intake. Diet-derived and microbially linked
metabolites accounted for the largest inter-subject differences. Interestingly, subjects exhibited large
variation in levels of bioactive fatty acid esters of hydroxy fatty acids (FAHFAs) and sulfonolipids. Two
subjects who had taken antibiotics within 6 months prior to sampling showed markedly different patterns
in these and other microbially related metabolites; from this variation, we identi�ed Blautia species as
most likely to be involved in FAHFA metabolism. Thus, in vivo sampling of the human small intestine
under physiologic conditions can reveal links between diet, host and microbial metabolism.

Introduction
The human small intestine is an approximately 6 meter-long tube between the stomach and the colon
and is the primary site of protein, fat, carbohydrate, and other nutrient absorption1. Malabsorption of
dietary components in the small intestine can lead to malnutrition, which is associated with mortality,
particularly in older adults2. Small intestinal diseases such as gluten-sensitive enteropathy and Crohn’s
disease (CD) can lead to malabsorption and malnutrition3. Their symptoms are non-speci�c and highly
variable and diagnosis requires invasive endoscopic procedures4,5. Non-invasive disease screening and
better understanding of small intestinal tract diseases will improve human health and quality of life and
will open doors for therapeutic interventions by, for example, directly targeting speci�c microbial
compositions. However, progress in this area has been hindered by di�culty in intestinal sampling6. Here,
we present results from a study performed using a newly-developed ingestible device that non-invasively
collects samples of luminal contents from the small intestine and ascending colon. This technology
should facilitate intestinal disease diagnosis, monitoring of nutrient absorption across the small intestine,
and improve understanding of the complex human gut ecosystem.

 

Metabolites in the small intestine originate from host secretion, anything we ingest (the exposome)7, and
microbial transformations of the above. Humans secrete complex mixtures of chemicals and enzymes
into the gastrointestinal tract via saliva8, gastric secretions9, bile10, pancreatic �uid11, and epithelial
mucus12. Commensal gut microbes extensively modify metabolites causing an immense expansion in
chemical diversity. Non-enzymatic chemical reactions further increase this chemical space13.
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Metabolomics analysis using mass spectrometry and comprehensive databases is most suitable to
chemically analyze such complex biological mixtures14,15.

 

Here, we showcase the utility of analyzing intestinal tract samples from humans under a normal dietary
routine with respect to meal size, frequency, and composition. We demonstrate that these data can be
used to reconstruct transformations of protein, carbohydrate, and fat digestion. We further provide
evidence that the sampling devices targeted the intended locations within the gut and offer insights into
speci�c microbes that alter the gut metabolome. 

Results
Sampling and metabolomic analyses

We aimed to comprehensively study metabolomic differences among luminal samples from the upper
intestinal tract of 15 healthy subjects to better understand the extent of spatial and temporal variation
and to gauge the prospects of integrating metabolome and microbiome data. Volunteers swallowed sets
of 4 sampling devices per sampling timepoint. These ingestible sampling devices were comprised of a
collapsed collection bladder capped by a one-way valve in a capsule treated with pH-sensitive coatings.
The four types of capsules differed only in their enteric coating which dissolved at pH 5.5 (capsule 1), pH
6 (capsule 2), and pH 7.5 (capsules 3 and 4) (Figure 1A). The thickness and pH-responsiveness of the
coating enabled sampling at speci�c locations of the intestinal tract after entry into the duodenum. The
devices did not contain any electronics beyond a passive radio frequency identi�cation chip for tracking
purposes. Once the coatings dissolved, an elastic collection bladder expanded and collected up to 400 µL
of luminal contents through vacuum suction. The one-way valve prevented loss of sample and
contamination from downstream �uids. Stool samples were frozen at -20 °C and all capsules were
recovered from the stool prior to analysis. Liquid contents were retrieved from capsules using hypodermic
needles. Aliquots of the raw sample were used for 16S ribosomal RNA microbiome analyses and the
supernatants from centrifugated samples were used for metabolomic studies.

 

The measured pH of the luminal contents for device types 1 through 4 were consistent with the expected
pH gradient across the intestinal tract16,17, covering the duodenum, jejunum, ileum, and ascending colon
(Figure 1A). The pH in type 1 and 2 devices was signi�cantly different from type 3 and 4 devices (Figure
S1B; Wilcoxon 2-way rank-sum test, p=2.4×10-14), whereas pH was not signi�cantly different between
type 1 and type 2 devices, or between type 3 and type 4 devices (Figure S1B). We therefore associated
type 1/2 and 3/4 devices with proximal and distal regions of the upper intestinal tract, respectively.
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We used �ve mass spectrometry assays to analyze the luminal contents within these capsule devices
and the associated stool samples. By matching chromatographic retention times, accurate precursor
masses, and mass spectrometric fragmentation (MS/MS) to MassBank.us public and NIST20 licensed
libraries, we annotated 1,909 chemicals from gut luminal and stool contents at MSI con�dence levels 1-3
(Table S1)18, including 155 internal standards used for quality control and quanti�cation purposes.
Additionally, >12,000 unknown chromatographic features were reliably detected above the level of
method blanks (Table S2). Using ClassyFire software19, structurally annotated metabolites fell into 61
chemical subclasses (Table S1). Two untargeted high-resolution liquid chromatography (LC) MS/MS
assays focusing on hydrophilic and lipophilic metabolites yielded most of the annotated compounds,
with 1,608 identi�cations. Untargeted gas chromatography-MS added 119 primary metabolites,
supplemented by targeting 6 short chain fatty acids (SCFA) and a targeted LC-MS/MS assay for 17 bile
acids (Figure 1B). Quality control analysis of total metabolic variance revealed separation of stool and
intestinal samples, with strong clustering of pooled quality control samples (Figure S1A).

 

Spatial variation across the upper intestine

Metabolome results revealed striking differences between stool and intestinal samples (Figure S2) and
among the intestinal tract samples (Figure S3). To uncover spatial differences across the intestine, we
applied linear mixed effect models (LMM) that accounted for sampling location (proximal or distal) as
well as other variables (Table S3, S4). Speci�cally, we studied the 1,182 most prevalent metabolites that
were detected in >50% of device samples. Of these, 630 (54%) were signi�cantly different in the proximal
compared to distal upper intestine (FDR p < 0.05; LMM) (Figure 2, Table S4), with 473 metabolites at
higher levels in the proximal compared to distal upper intestine and 157 compounds at lower levels in the
proximal compared to distal upper intestine (Figure 2). Known microbially generated chemicals including
SCFAs20,21, secondary bile acids22, and some microbially conjugated bile acids23,24, increased from the
proximal to distal upper intestine (Table 1, Figure 2). Of the 11 detected acetylated amino acids, 7
increased from the proximal to distal upper intestine (raw p < 0.05; LMM) (Table 1, Figure 2). We also
examined the 12,346 chemically unannotated metabolite signals, restricting our attention to 9,317 signals
that were detected in >50% of intestinal samples. Overall, 3,594 (38%) features were signi�cantly different
between the proximal and distal upper intestine, with 1,937 features at higher levels in the proximal
compared to distal upper intestine and 1,657 features at lower levels in the proximal compared to distal
upper intestine (FDR p <0.05; LMM) (Figure S4).

 

To interrogate general metabolic differences between locations, we used chemical enrichment statistics.
Di- and tri-peptides were among the most signi�cantly decreased classes from the proximal to distal
upper intestine (Table 1, Figure S5). Of the 333 di- and tri-peptides measured, 262 signi�cantly decreased
in abundance from the proximal to distal upper intestine (raw p < 0.05; LMM) (Table 1). A range of other
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compound classes also exhibited signi�cantly higher levels in proximal intestinal tract samples
compared with distal samples, including sugars, sugar alcohols, nucleosides, carnitines, and ceramides
(Table 1, Figure S5). Several other compound classes exhibited signi�cantly lower levels in proximal
compared to distal intestinal tract samples, including dicarboxylic acids and phenolics (Table 1, Figure 2).
In fact, 3 of the top 6 overall most signi�cantly increased metabolites between the proximal and distal
upper intestine were dicarboxylic acids (hexadecanedioic acid, tetradecanedioic acid, and octadecanedoic
acid) (Figure 2).

 

Food-speci�c metabolites

Next, we used LMM to test for associations of food intake logs recorded by the subjects to levels of
intestinal tract metabolites. We tested for consumption of fruit, alcohol, dessert, animal protein,
vegetables, grains, coffee/tea, and dairy food types ingested 6 hours before swallowing capsule devices
(Table S3). After correcting for multiple-hypothesis testing, some food types had no signi�cantly
associated metabolites, unsurprisingly due to the small sample size for some food types and strong FDR
correction accounting for tests of 1,182 metabolites (Table 3, Figure 3, Table S4). Nonetheless, our
analysis revealed several strong associations, some of which validated previous biomarkers and others
that had not previously been identi�ed.

 

Fruit-associated metabolites

Using effect size differences of ±0.2 and raw p < 0.05, fruit consumption was signi�cantly associated
with 20 compounds at increased concentration and 17 metabolites at decreased concentration (Figure
3A). Some metabolites were directly linked to fruit consumption based on having strict FDR-corrected p <
0.05 (Table 2, Figure 3A), including N-methylproline and stachydrine, both of which were previously
reported as fruit consumption biomarkers for blood plasma in non-controlled dietary studies25.
Betonicine, a known component of fruit juice26, also increased after fruit consumption at raw p < 0.05
(Figure 3A, Table 2) but did not achieve the FDR-signi�cance threshold. Similarly, three keto acids (4-
methyl-2-oxovaleric acid, ketoisovaleric acid, and 3-methyl-2-oxovaleric acid) also signi�cantly increased
in response to fruit intake at raw p < 0.05 (Figure 3A, Table 3). Since metabolites are not independent
from each other, rather they are linked via food compositions and microbial and enzymatic pathways, we
used ChemRICH chemical set enrichment statistics to identify signi�cantly altered clusters of metabolites
(Figure 3C). This strategy revealed keto acids as the chemical class with the most signi�cant response to
fruit (Figure 3A,C), representing the �rst report of keto acids as a fruit biomarker in the human gut.
Importantly, ChemRICH also revealed that typical fruit ingredients like phenylacetates and phenolic
natural products were positively associated with fruit intake (Figure 3C).

 



Page 6/30

Alcohol-associated metabolites

Alcohol consumption was most signi�cantly associated with ethyl sulfate (FDR p < 0.05), a known
plasma biomarker of alcohol consumption (Table 2)27. Stachydrine was linked with both fruit and alcohol
consumption (FDR p < 0.05). Trp-Lys was signi�cantly decreased with alcohol consumption after FDR
correction (Figure 3B). In total, 40 di- and tri-peptides decreased with alcohol consumption (raw p < 0.05)
with a ChemRICH cluster p = 8.8×10-18 (Table S4, Figure S6, S7).

 

Dessert-associated metabolites

“Dessert” was de�ned as consumption of high fat/high sugar foods, such as soda, cake, and ice cream.
Two substituted benzoic acids, 3-hydroxy-4-methoxybenzoic acid and 3,4-dihydroxybenzoic acid, were
associated with dessert (raw p < 0.05) (Table 2, Figure 3D). These compounds are metabolic
intermediates in the breakdown of vanillin and isovanillin28. Neochlorogenic acid was also signi�cantly
associated with dessert (raw p < 0.05). Neochlorogenic acid is present in a variety of fruits and berries29

including cherries30 and peaches31. Other food types that were included in the mixed effect model also
had signi�cantly associated metabolites (Table S4, Figure S6, S7).

 

Caffeine metabolism

Caffeine was detected in the vast majority of samples (Table S1). Surprisingly, caffeine was not
signi�cantly associated with coffee or tea consumption during the experimental timeframe (FDR p =
0.87) (Table S4), most likely due to the fast absorption of caffeine after ingestion. However, caffeine
metabolic pathways were readily discerned through Spearman-rank correlation analysis. The six
metabolites that were most strongly correlated at FDR p < 10-13 to caffeine were known caffeine
catabolites, including theophylline and theobromine (Figure 4A,B). Hence, upper intestinal tract metabolite
correlations may enable reconstruction of microbial and enzymatic pathways of food degradation,
especially because the detected levels of food compounds, like caffeine products, can span four orders of
magnitude.

 

Temporal variation across upper intestinal samples

To investigate whether sampling time or sampling region had a larger impact on upper intestinal
metabolites, we used analysis of variance to calculate the number of metabolites that signi�cantly
differed between the 4 device types by subject, or between the 4 sampling time points (after each meal)
by subject. The large differences in metabolite levels between the proximal and distal sampling regions
were often superseded by metabolic differences between time points, showing that 12 of 15 subjects had
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more statistically different metabolites between meals (time points) than between intestinal regions
(capsule types) (Figure 5A). A closer inspection of the compound classes that contributed to these
differences found that di- and tri- peptides (within the chemical class of carboxylic acids) were the largest
chemical class that distinguished between capsule types, representing >70% of all signi�cantly different
metabolites in 5 subjects and >40% for another 7 subjects (Figure S8A). For metabolites that
differentiated sampling time points, we found sugars (organooxygen compounds) to be enriched in 13 of
15 subjects (Figure S8B). Similarly, more signi�cantly different imidazopyrimidines, indoles, and
iso�avanoids were found to distinguish sampling time points than intestinal regions (Figure S8). These
classes signify dietary metabolites that were different due to variation between food types ingested
during different meals, but were not as useful for differentiating between intestinal regions.

 

Overall metabolome variation among subjects

Our data showed large inter-subject variation (Figure S8). Using multivariate discriminant analysis (PLS-
DA), we identi�ed large differences in the proportion of metabolites that were most important to
differentiate between the proximal and distal intestine (capsule types) and between the 15 subjects
(Figure 5B). The large overall variance among samples obscured clear visualization of PLS-DA based on
subjects, capsules, or time points. Nonetheless, the 100 metabolites that contributed most to multivariate
discrimination included many diet/exposome-related compounds including caffeine and caffeine
breakdown products, acetaminophen, ethyl sulfate, capsaicin, and secoisolariciresinol (Table S5). Using
chemical subclass categories19, carbohydrates and purines were more important for differentiating
among subjects than among sampling regions (Figure 5B). These data support the hypothesis that diet is
a critical factor causing inter-individual differences in intestinal lumen metabolites. Similarly, peptides
were more important for differentiating between sampling regions than between subjects. Indeed, no di-
or tripeptides were found in the 100 metabolites that contributed most to multivariate discrimination
between subjects (Table S5). Interestingly, hierarchical clustering separated stool samples by subject
while intestinal samples did not strongly cluster by subject (Figure S9).

 

Variation in bile pigments among subjects

Although large overall variation obscured direct visualization of inter-subject differences when using all
data in PLS-DA projections, speci�c compounds exhibited very large concentration differences among
individuals (Figure 6). For example, the human heme-derived bile pigments biliverdin and bilirubin and the
microbially produced urobilin and stercobilin varied drastically among capsules for some subjects and
were also greatly reduced or absent in speci�c subjects, such as stercobilin for subjects 10 and 15 (Figure
6). Interestingly, these two subjects (#10 and 15) reported use of antibiotics 1-5 months prior to the study.
Conversely, subjects 5 and 7 showed high levels of stercobilin but frequent absence of biliverdin and
bilirubin. The same subject-speci�c pro�les of bile pigments were also observed in stool samples (Figure
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S10). Production of secondary bile acids has been proposed to use a similar enzymatic pathway as
stercobilin production32,33 and the two subjects that had consumed antibiotics also showed reduced
levels of deoxycholic acid, a secondary bile acid (Figure 4). These data support the hypothesis that
metabolic pro�les re�ect differences in microbial activity for speci�c pathways, here demonstrated for
bile pigment metabolism34. We did not identify signi�cant associations of microbial species abundance
in 16S rRNA gene quanti�cation to stercobilin levels, likely due to limited statistical power.

 

Variation in fatty acid esters of hydroxy fatty acids (FAHFAs) among subjects

FAHFAs were �rst identi�ed 10 years ago and are biologically active and regulate physiology35,36. A
speci�c subset of FAHFAs with an alpha lipid linkage are acyl alpha-hydroxyl fatty acid (AAHFAs) and
were discovered just 2 years ago37. We identi�ed 88 FAHFAs in this study (Table S1). Strikingly, a very
large difference among subjects was found for four speci�c FAHFAs, all of them linkages of a long-chain
hydroxyl fatty acid back bone that was esteri�ed with C3- or C4-short chain moieties. Three of these
bioactive lipids were esteri�ed at the alpha-position (‘AAHFA’; AAHFA 4:0/22:0, AAHFA 3:0/22:0, and
AAHFA 3:0/24:0), and one was esteri�ed elsewhere on the backbone (FAHFA 3:0/23:0). Nine subjects
frequently exhibited high levels of these FAHFA lipids while 6 subjects produced very little or undetectable
amounts (Figure 6). The same subject-speci�c trends were observed in stool samples (Figure S10).

 

Interestingly, low levels of long-chain or short-chain fatty acid substrates propionic (C3:0) and butyric acid
(C4:0) did not explain the differences observed in these short-chain FAHFAs in intestinal or stool samples
(Figure 6, Figure S11). We therefore investigated whether speci�c bacteria were associated with the
presence or absence of the four FAHFAs of interest. Only one taxa, Blautia sp, phylogenetically most
closely related to Blautia obeum, was signi�cantly associated (FDR p < 0.0001) with detection of these
FAHFAs. Blautia obeum is a known short chain fatty acid producer38 which initially suggested production
of the short chain fatty acyl constituents as a driver of the subject-speci�c FAHFA production. However,
FAHFA 4:0/16:0 did not show the same subject-speci�c trend, suggesting a high substrate speci�city for
the enzyme(s) that are likely involved in FAHFA production in Blautia sp.

 

Variation in sulfonolipids among subjects

For the �rst time, here we report the detection of sulfonolipids in human samples. These lipids were only
recently added to lipidomic libraries39, leading to the discovery that they are microbially produced in
mouse intestinal tracts and linked with in�ammatory phenotypes40,41. In intestinal device samples, we
detected sulfonolipids with strong inter-subject trends regardless of sampling time point (meals),
suggesting that sulfonolipids were microbially produced in some subjects, but not in others. The 2
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subjects who had previously received antibiotics showed much lower levels of sulfonolipids than all other
subjects (Figure 6), suggesting that the antibiotic treatment may have eliminated the microbial producers.
Interestingly, sulfonolipids were also absent in speci�c samples of other subjects, prompting us to
examine associations of sulfonolipids with bacterial taxa. Sixteen taxa were signi�cantly enriched in
sulfonolipid-containing samples, including 3 members of the Desulfovibironaceae family (Table S6). Also
enriched were 4 members of Bacteroidetes, a phylum with known sulfonolipid producers, including an
Alistipes species that was previously associated with sulfonolipid production in mice41.

 

Intestinal samples compared to stool samples

The chemical pro�les of intestinal samples differed substantially from those of stool (Figure S2). Thirty-
one metabolites were >100 times more abundant on average in the intestine compared with stool. These
metabolites consisted of glycinated lipids, sugars, plant natural products, carnitines, microbially
conjugated bile acids, and S-succinylcysteine (Table S7). Peptides were also generally at much lower
levels in stool samples compared with intestinal samples, especially when compared to the proximal
intestine (Figure S2). Microbially conjugated bile acids were dramatically higher in the upper intestine
compared to stool, despite the much lower microbial density in the small intestine compared to the colon.
These data con�rm the involvement of microbially conjugated bile acids in enterohepatic circulation. We
also identi�ed >100 metabolites that were >100 times more abundant in stool compared with intestinal
samples (Table S7); these metabolites were mostly polar lipids such as PEs, PIs, and PGs, as well as
speci�c FAHFAs. The high abundance of membrane lipids in stool samples is likely due to the high
amount of bacterial cell material compared to luminal samples from the upper intestine.

Discussion
Spatial and temporal variation in the intestinal tract

Here, we provide the �rst report of metabolome differences in the upper intestinal tract in healthy human
subjects using a non-invasive, ingestible sampling device. The results presented here open the door for
future detailed in vivo studies on digestion and intestinal diseases. As expected, the metabolome of stool
was highly distinct from that of the intestine. Thus, stool cannot serve as a surrogate for the gut intestinal
tract, rather only for colonic contents (at best). Even within the intestinal tract, >50% of annotated
metabolites exhibited signi�cantly different levels between proximal and distal locations. These spatial
differences in the intestine re�ect classic food digestion and absorption42 that we observed for di- and
tripeptides43 and acylcarnitines44,45, or ceramides that are hydrolyzed to sphingosine and free fatty acids
prior to intestinal uptake46. By contrast, short chain fatty acids exhibited increased levels in distal regions,
likely due to their production by microbes20,21. Acetylated amino acids, which have been associated with
Crohn’s Disease47, also exhibited higher levels in the distal compared to proximal upper intestine, possibly
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due to slower absorption of acetylated compared with non-acetylated amino acids48,49. Bile acids are
transformed extensively by microbes, and levels of secondary bile acids increased along the intestine17.

 

We also found that dicarboxylic acids increased in concentration from the proximal to distal upper
intestine. Dicarboxylic acids are generated during catabolism (omega-oxidation) of fatty acids, which
occurs in human cells50, plants51, and microbes52,53. The lead compound hexadecanedioic acid was
most strongly correlated with other dicarboxylic acids, plant metabolites, bile acids, and known
microbially produced compounds (Table S5). Epithelial cells contain omega-hydroxylated lipids essential
to maintain epithelium barrier function54 that can be cleaved by lipases to form dicarboxylic acids. We
hypothesize that the consistent and signi�cant increase of dicarboxylic acids along the upper intestine is
due to catabolism of human epithelial lipids.

 

We found that dietary metabolites were a leading cause of temporal differences during the 2 days and 4
sampling time points of this study. Subjects were not prescribed speci�c meals, and hence diet-based
variation was expected to differentiate subjects and time points. Future studies with longer sampling
and/or controlled diets may elucidate patterns, diurnal cycles, or temporal shifts in microbial populations
involved in small intestinal health and disease.

 

Food-related metabolites

The bioavailability, absorption, and mechanism of action of dietary phenolic metabolites are not fully
understood55-57. We measured 7 and 28 phenolic metabolites that decreased and increased, respectively,
from the proximal to distal upper intestine (Table S4). These trends are likely caused by a combination of
factors including intestinal absorption, enzymatic transformation57,58 such as deglycosylation, and by
delayed breakdown of plant cells and cell-wall components by microbial enzymes59-61. As an example,
we found that the �axseed-a�liated lignan secoisolariciresinol was most signi�cantly enriched in distal
regions compared with proximal samples, likely due to both bioavailability62 and deglycosylation63.

 

Despite the small size of this study with 15 subjects, we were able to validate a range of dietary
biomarkers that were previously found in blood and correlated with fruit25 and alcohol27 consumption.
These examples serve as proof-of-concept, lending credibility to our discovery of keto acids as
biomarkers for fruit intake. Keto acids are formed from enzymatic deamination of amino acids, for
example by gut bacteria64. The decrease in di- and tri-peptides after alcohol consumption suggested a
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decrease in total protease activity, possibly due to impaired pancreatic secretion65,66, rather than direct
inhibition because trypsin and chymotrypsin are active even in 20% ethanol solution67.

 

Both human68 and bacterial69,70 enzymes can transform caffeine into a number of chemical products.
Our association of caffeine levels with caffeine catabolites shows how other exposome biochemical
pathways can be investigated in the human gut in future targeted studies using this sampling approach.
We did not �nd an association of coffee intake and intestinal caffeine levels, likely because caffeine is
absorbed rapidly within 1 h of oral intake, and has a mean half-life of 4.5 h (range of 2.7 to 9.9 h) in the
bloodstream71. Caffeine is metabolized and excreted through several routes including urine72 and bile73.
Bile is the expected origin of caffeine measured in this study, since multiple hours passed between
beverage consumption and capsule sampling events.

 

Inter-subject variation

Subject-speci�c trends were best explained by differences in the levels of metabolites of plant and
microbial origin (Figure 5B), including the pepper compound capsaicin, the �axseed compound
secoisolaricersinol, and the microbially produced butyric acid and propionic acid. Other metabolites that
showed subject-speci�c variation, such as N-methylhistamine, phenethylamine, phenylacetaldehyde, and
succinic acid, may depend on a combination of human, dietary, or microbial factors.

 

Interestingly, we identi�ed a subset of microbially linked metabolites that were highly subject-dependent,
particularly in two subjects who received oral antibiotics within 5 months prior to sampling. These
subjects were characterized by very low levels of stercobilin, deoxycholic acid, a subset of FAHFAs, and
sulfonolipids, all of which have been linked to the gut microbiota22,37,74. FAHFAs have been strongly
linked to the etiology of diabetes36. FAHFAs are also found endogenously36 and in food75. Utilizing the
varying presence of these metabolites across samples and subjects, we related speci�c bacterial taxa to
metabolites. A group of four FAHFAs were signi�cantly associated with Blautia sp. Highly subject-speci�c
FAHFAs were detected, with a combination of very long-chain (≥22 carbons) and short-chain (3-4
carbons) fatty acid (SCFA) components. Other FAHFAs in our study contained two long-chain fatty acyls
(16-18 carbons). The only other frequently detected FAHFA with butyric acid and a long-chain fatty acid
was AAHFA 16:0/4:0, which displayed a different subjectspeci�c pattern than the four Blautia sp-
associated FAHFAs. We therefore propose that Blautia sp speci�cally produces FAHFAs with propionic
and butyric acid esters of hydroxylated very long-chain fatty acyls (22:0, 23:0) and not of hydroxyl-forms
of the most abundant fatty acids, C16-18.
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We also detected sulfonolipids in humans for the �rst time. Sulfonolipids were associated with 15
microbial taxa, including known sulfonolipid producers. Interestingly, we also identi�ed three bacterial
species in the Desulfovibironaceae family, which has been associated with ulcerative colitis76.
Sulfonolipids have been associated with high-fat diets41 and have both pro- and anti-in�ammatory
effects40,77. In this study, two subjects lacked the proposed sulfonolipid-producing bacteria, and we did
not detect sulfonolipids in their samples.

 

An important question is the time frame needed for repopulation of subjects with sulfonolipid-,
stercobilin- and long-chain AAHFA-producing bacteria after antibiotic treatments. The prevalence and
abundance of these bacteria in the human gut, which is impacted by antibiotics, may correlate with the
incidence and etiology of diabetes and in�ammatory bowel disease. In summary, the use of non-invasive
sampling devices, in combination with metabolomics and genomics, has substantial potential to enable
more precise intervention and prevention strategies for addressing human disease.

Methods
Study design

The study was approved by the WIRB-Copernicus Group IRB (study #1186513) and written informed
consent was obtained from each subject. Healthy volunteers (Table 3) were selected to exclude
participants suffering from clinically detectable gastrointestinal conditions or diseases that would
potentially interfere with data acquisition and interpretation. Recruitment and sample collection was
carried out between March of 2019 and October of 2020 in the San Francisco Bay Area. 

 

Patient and Public Involvement

Subjects and the public did not contribute to the research question or study design. Healthy volunteers
were recruited from a routine clinical practice setting without any public advertisement. Subjects were
aware of the research questions and understood the burden and time required to participate in the study
prior to their enrollment.

 

Sample collection 

The CapScan sampling devices (Envivo Bio Inc, San Carlos CA) were constructed with a coating designed
to dissolve at a speci�c pH to take advantage of the pH gradient of the human intestine. After the coating
dissolved, a compressed elastic bladder expanded to pull in 400 µL of luminal contents through a one-
way valve. This valve remained sealed until recovery from stool. The pH coating of each capsule type
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dissolved at pH 5.5 (type 1), 6 (type 2), or 7.5 (types 3 and 4). Type 4 also had a time delay to target the
distal ileum or ascending colon. Four sampling capsules were swallowed 3 hours after lunch or dinner
across 2 days (Figure 1A). Subjects were instructed to maintain their normal diet, record the time of any
food or drink consumed over the testing period, and to not consume caffeinated beverages after lunch on
sampling days. Detailed guidelines are provided in Supplemental Material. Stool was collected and
immediately frozen at -20 °C until stool was thawed and �lled capsule devices were retrieved. Liquid
sample was removed from each bladder using a hypodermic needle. An aliquot of each sample was used
for 16S rRNA gene sequencing while another aliquot was centrifuged at 10,000 rcf for 3 min, and the
supernatant was used for metabolomics analysis.

 

Sample preparation

For all non-targeted analyses, 10 µL of intestinal lumen samples were subjected to a modi�ed biphasic
water, methanol, and methyl tert-butyl ether extraction78 to separate polar and non-polar metabolites. The
polar and non-polar phases were divided into multiple aliquots in 96-well plates, dried by rotary vacuum,
and frozen until further analysis. Homogenized stool samples were prepared using an analogous
extraction procedure with modi�cation for bead-homogenization and extraction in microcentrifuge tubes
to account for the solid nature of the sample. Targeted bile acid analysis was performed using aqueous
phase of the described biphasic extraction. Targeted SCFA analysis used an acidi�ed water and MTBE
extraction followed by MTBSTFA derivatization79. For detailed sample preparation methods see
Supplemental Material.

 

Data acquisition and statistics

Untargeted mass spectrometry-based metabolomics was performed using reversed-phase and
hydrophilic interaction liquid chromatography coupled to high resolution mass spectrometry (LC-MS/MS)
and gas chromatography-time of �ight mass spectrometry (GC-MS)80. Targeted metabolite analyses were
conducted by unit resolution LC-MS/MS and GC/MS80. Details are given in Supplemental Material and
Table S9.

 

Microbiota composition was analyzed as described previously81. In brief, DNA was extracted using a
Microbial DNA extraction kit (Qiagen) and 50 µL from a capsule device, 200 µL of saliva, or 100 mg of
stool. 16S rRNA amplicons were generated using Earth Microbiome Project-recommended 515F/806R
primer pairs and 5PRIME HotMasterMix (Quantabio 2200410) with the following program in a
thermocycler: 94 °C for 3 min, 35 cycles of [94 °C for 45 s, 50 °C for 60 s, and 72 °C for 90 s], followed by
72 °C for 10 min. PCR products were cleaned, quanti�ed, and pooled using the UltraClean 96 PCR
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Cleanup kit (Qiagen 12596-4) and Quant-iT dsDNA High Sensitivity Assay kit (Invitrogen Q33120).
Samples were sequenced with 250-bp reads on a MiSeq instrument (Illumina).

Sequence data were de-multiplexed using the Illumina bcl2fastq algorithm at the Chan Zuckerberg
BioHub Sequencing facility. Subsequent processing was performed using the R statistical computing
environment (v. 4.0.3)82 and DADA2 as previously described using pseudo-pooling83. Taxonomy was
assigned using the Silva rRNA database v. 13284. Spearman rank was used for correlation analyses.
Benjamini-Hochberg85 false-discovery rate calculations were used to correct for multiple testing.
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Chemical class name size

 
p-
value

FDR  
p-
value example compound

# metabolites increased
from proximal to distal

# metabolites decreased
from proximal to distal

di-peptides 268
<2.2E-
20

2.2E-
19 Lys-Phe 10 211

tri-peptides 65
<2.2E-
20

2.2E-
19 Ala-Ala-Ala 1 51

phenolic natural
products 107

<2.2E-
20

2.2E-
19 secoisolariciresinol 28 7

unsaturated ceramides 121
<2.2E-
20

2.2E-
19

Cer 42:1;3O| 
 Ceramide
20:1;2O/22:0;O 0 33

conjugated bile acids 35
<2.2E-
20

2.2E-
19

glutamyl-cholic
acid 11 14

carnitines 27
<2.2E-
20

2.2E-
19 oleoyl-carnitine 0 21

dicarboxylic acids 21
<2.2E-
20

2.2E-
19

hexadecanedioic
acid 18 0

Saturated ceramides 72
1.1E-
15

9.9E-
15

Cer 34:0;3O| 
 Ceramide
18:0;2O/16:0;O 0 20

unsaturated fatty acids 25
1.1E-
13

7.7E-
13

9-oxo-10,12-
octadecadienoic
acid 6 11

sugars 68
1.5E-
13

9.7E-
13 tagatose 8 22

nucleoside related
metabolites 62

7.4E-
10

3.9E-
09 2‘-O-methyluridine 8 19

amino acids 28
3.0E-
08

1.3E-
07 beta-alanine 8 5

amino acids, sulfur 10
2.3E-
07

9.5E-
07 cysteic acid 4 3

saturated fatty acids 15
2.8E-
07

1.1E-
06 nonadecanoic acid 5 3

phenylacetates 8
3.0E-
07

1.1E-
06 phenylacetic acid 7 0

unsaturated phospha-
tidyl-ethanolamines 44

7.3E-
06

2.4E-
05

LPE-N (FA)36:4| 
 LPE-N (18:2/18:2) 0 7

sugar alcohols 18
8.5E-
06

2.6E-
05 deoxypentitol 1 7

FAHFAs 88
3.3E-
05

9.0E-
05

AAHFA 16:0;O| 
 AAHFA 7:0/9:0;O 4 6

acetylated amino acids 11
4.3E-
05

1.1E-
04 N-acetyl-valine 7 0

SCFAs 8 9.2E- 2.2E- acetic acid 5 0



Page 17/30

04 03

 

 

 
Table 2:  Selected metabolites (of 1,182) associated with alcohol, dessert, and fruit consumption. LMM
coefficient, raw p-value, and Benjamini-Hochberg-corrected p-value.
 
Food
Tested Compound

Effect
direction

Linear model
effect size

Raw p-
value

FDR p-
value Compound relevance/reference

Alcohol Ethyl sulfate Increase 0.36
1.61E-
06

1.91E-
03 Established alcohol biomarker27

Alcohol Stachydrine Increase 0.28
2.40E-
05

9.46E-
03

Found in some grains, fruit, and other
plants86-88

Alcohol Trp-Lys Decrease -0.37
1.85E-
05

9.46E-
03 Dipeptides; unknown relevance 

Dessert
3-hydroxy-4-
methoxybenzoic acid Increase 0.33

4.10E-
04

4.85E-
01

Breakdown product of isovanillin found
in many foods28

Dessert Neochlorogenic acid Increase 0.31
7.66E-
03

9.92E-
01

Plant polyphenol, abundant in some
fruits and berries29,89

Fruit N-methylproline Increase 0.41
4.31E-
08

5.10E-
05

Blood serum biomarker of fruit
consumption25

Fruit Stachydrine Increase 0.26
3.24E-
05

1.91E-
02

Found in some grains, fruit, and other
plants86-88

Fruit Ketoisovaleric acid Increase 0.29
2.34E-
04

9.23E-
02

Keto acid, ubiquitous metabolic
intermediates90

Fruit Betonicine Increase 0.23
4.65E-
04

1.37E-
01 Component of citrus fruits26

Fruit
4-methyl-2-oxovaleric
acid Increase 0.23

1.95E-
03

3.83E-
01

Keto acid, ubiquitious metabolic
intermediates90

Fruit Hexanoyl-L-carnitine Decrease -0.31
3.14E-
03

3.83E-
01

Acyl-carnitine, prevalent metabolic
intermediate45

 

 
Table 3: Subject Demographics.  Detailed exclusion and inclusion criteria are supplied in
supplemental methods. 
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Attribute Value

Total number of subjects 15

Subjects completing the study 15

Age Mean 42, range 22-64

Females 8

Males 7

Antibiotic use within past 6 months 2

Underlying medical conditions 0
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Figures

Figure 1

Study design and metabolomics summary. (A) Study design for upper intestinal tract investigation. Four
designs of an intestinal sampling device were used to sample the proximal to distal upper intestinal
region. Fifteen human volunteers swallowed at least 16 capsules over two days after lunch and after
dinner after an initial test on day 1. Capsules were retrieved and analyzed by targeted and non-targeted
LC-MS/MS and GC-MS methods. (B) Identi�ed metabolites from the different analytical methods used to
analyze samples including non-targeted reverse phase (RP) liquid chromatography (LC) with electrospray
ionization (ESI) and tandem high resolution mass spectrometry (MS/MS), hydrophilic interaction liquid
chromatography (HILIC) ESI-MS/MS, non-targeted gas chromatography (GC) mass spectrometry (MS),
targeted quanti�cation of short chain fatty acids (SCFA) by GC-MS, and targeted bile acid quanti�cation
by LC-ESI-MS/MS. Chemical class fractions are included based on automated ClassyFire chemical
classi�cation.
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Figure 2

Comparison of proximal and distal upper intestinal metabolite levels. Signi�cance was calculated by
linear mixed effect model (LMM). Signi�cance of p < 0.05 is delimited by the lower dashed horizontal
line. Circle shape for a metabolite indicates non-signi�cance after FDR correction and diamond shape
indicates signi�cance (p<0.05) after false discovery rate (FDR) correction (n=1,182). Metabolites detected
in >50% of intestinal samples were included in this analysis (n=1,182). Effect size coe�cient is the slope
estimated by LMM with positive (negative) coe�cient meaning higher (lower) in the distal compared to
proximal upper intestine. Vertical dashed lines are ±0.2 effect size coe�cient.
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Figure 3

Intestinal metabolite association with food types. Volcano plots show signi�cance of each metabolite to
food type (A) fruit, (B) alcohol, and (D) dessert calculated by linear mixed effect model (LMM).
Consumption is considered food eaten within 6 hours of swallowing sample devices. Signi�cance of p <
0.05 is delimited by the lower dashed horizontal line. Circle shape for a metabolite indicates non-
signi�cance after false discovery rate (FDR) correction and diamond shape indicates signi�cance
(p<0.05) after FDR correction (n=1,182). Metabolites detected in >50% of intestinal samples were
included in this analysis. Effect size coe�cient is the slope estimate calculated by LMM, with positive
(negative) coe�cient meaning the metabolite was higher (lower) after food consumption. Vertical dashed
lines are ±0.2 effect size coe�cient. (C) Chemical enrichment statistics (ChemRICH) analysis revealed
signi�cant chemical classes after fruit consumption visualized by separating classes by chemical
lipophilicity (logP) and chemical class signi�cance level of -log10(p-value). Red circle indicates the
chemical class increased after fruit consumption and blue indicates the chemical class decreased after
fruit consumption. The size of circles indicates the size of the chemical class.
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Figure 4

Caffeine and related metabolites. (A) Plots of log10(peak height) of caffeine to theophylline, and caffeine
to theobromine for each sample where both metabolites were detected. (B) Chemical diagram of caffeine
and known metabolic pathways with detected metabolite structures shown and Spearman rank
correlation coe�cient (rs) reported for each structure. All Spearman rank correlations were signi�cant
with  p < 1.0×10-13.
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Figure 5

Temporal and personal variation compared to spatial variation in the intestinal metabolome. (A) The
number of metabolites that were signi�cantly different between intestinal regions (device types) or
between meals (sampling time points of four CapScan devices) were calculated for each subject by
analysis of variance (ANOVA). Only metabolites detected in >50% of samples for each subject were used
for this analysis. Non-FDR-corrected p < 0.05 was used as signi�cance value cutoff. (B) Multivariate
discriminant analysis (PLS-DA) was performed to �nd the metabolites that were most important to
distinguish between different subjects, or to distinguish between different regions (device types). The top
100 metabolites most important for distinguishing these groups are ranked by variable importance in
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project score (VIP) and are categorized by chemical subclass. Chemical subclasses with <3 metabolites
are reported as “Other”.

Figure 6

Heatmap of metabolites with strong inter-subject differences. Metabolites include bile pigments, fatty
acid esters of hydroxy fatty acids (FAHFAs and AAHFAs), short chain fatty acids, sulfonolipids (SLs), and
secondary bile acids. Samples are organized by subject and antibiotic consumption is indicated for the
two subjects that consumed antibiotics 1 and 5 months prior to this study. Color of heatmap ranges from
low (blue) to high (red) of metabolite abundance (peak height) or concentration (ng/mL) for bile acids.
Minimum and maximum values are used to set color scale for each metabolite (each row).
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